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ABSTRAC

A mathematical model was derived for simulating the Hydramatic 440 automatic trans-
mission. A closed-'oop controller for the 1-2 shift was then developed to produce a

smooth ouput shaft toique.

Comparisons of the open—loop and closed-loop simulations show that the jerk associ-
ated with current automatic povrered upshifts can be eliminated via closed-loop control

of the engine torque and the clutcl. pressures during the shift.
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1

Introduction

To date, very little work has been done in controlling the total powertrain of an
automobile during the shift in an automatic transmission. The objective of this study
is to derive a mathematical model of an automatic transmission and then develop a
closed-loop control algorithm to produce a smooth output shaft torque by modulating

engine torque and the clutch pressures.

The system equations for the Hydramatic 440 automatic transmission are derived
in Chapter 2. The objective of the model developed is for both simulation and control
of a transmission shift. The equations are derived using a bond graph approach. This
approach could easily be extended to other configurations of the planetary gear sets

and clutches of the automatic transmission.

The model derived is simulated in Chapter 3 using the current open-loop controls
for the Hydramatic 440 transmission. The transients which occur during the first to

second gear powered upshift are then analyzed.

A closed-loop controller is developed in Chapter 4 with the intent of obtaining a

smooth shift. The control inputs are taken as engine torque and the clutch torques.

Recommendations for future work are then given in Chapter 5.



2

Transmission Modelling

In this section, the system equations for simulating the Hydramatic 440 automatic
transmission are derived. The block diagram for the engine/transmission/driveline

system is shown below in Figure 3.1.

Pc
.
Engine Transmission Yo > Driveline v
SA ——9 Model Teng Model Model
.
AF ——P il Ty
wmg—’l
Y
J

Figure 2.1

2.1 Engine Model

The engine is modelled as a torque-producing device with one inertia. Engine
torque is taken as a function of the throttle angle (a), spark advance (SA), air-fuel
ratin (AF) and engine speed (w.). The system equations describing the engine are not

included in this report.



Chapter 2: Transmission Modelling

2.2 Transmission Model

The schematic diagram for the Hydramatic 440 automatic transmission is shown
below in Figure 2.2.1. The clutch schedule and the overall transmission gear ratio,

including the final drive gear ratio of 2.84, is shown in Table 2.2.1 for each gear range.

Tcng

B2

nl

E

Final
Drive Gear

Ts

—:t:’
i
I

A

Input  Reaction
Planetary Planetary

Figure 2.2.1
Range Clutches Engaged Gear Ratio
C; C. C, C, B, Br
1ot X 8.32
2nd ® X X 4.46
3rd X X 2.84
4th X ® X 1.99
Rev X X 6.76

Note that the input clutch, C;, and third clutch, C,, are connected to one-way sprags.

x ~ clutch on

Table 2.2.1

8

®~ sprag over-running
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Chapter 2: Transmission Modelling

The transmission model consists of five lumped inertias, four range clutches, two
bands, two sprags, an ideal compound planetary gear set, and a static torque converter
model with a lock-up clutch. The transmission parameters corresponding to the Hy-
dramatic 440 are included in Appendix I. The inputs to the transmission are engine
torque, output shaft torque, and the clutch pressures. The transmission outputs are

engine speed and transmission output speed.

The system equations describing the mechanics of the transmission are derived
next in sections 2.2.1-4, followed by the torque converter equations in section 2.2 5.

The system equations are derived using a bond graph approach.

2.2.1 Single Planetary Gear Set

A single planetary, or epicyclic, gear set and its schematic representation are shown
below in Figure 2.2.1.1. Note that only half of the schematic representation is shown

for convenience.

i

R

I
l

Figure 2.2.1.1

Assuming an ideal planetary gear sst, i.e. no backlash or compliance between gears,

the speed and torque relationships are



where
wWe SR

Tc,s.r

NSR
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o NS NR o e
we = (———'——'——'NS+NR)Q)5 + <_Nb -{-NR)wR (221.1)
. Ns
Ts = | ——— | T¢ 2.2.1.2
. (Ns +NR> ¢ ( )
_(_Ne | o
Tp = (Ns - Nﬂ) T (2.2.1.3)

denotes the speed of the carrier, sun, and ring gear, respectively,
denotes the torque of the carri:r, sun, and ring gear, respectively, and

denotes the number of teeth on the sun and ring gears, respectively

Using these equations as definitions, the bond graph for a planetary gear set becomes

where

1 —— T 0 < TF ~— 1
Ts . - Te

Ry we | Te Rr

1

Figure 2.2.1.2

Ns
Ro= V8 2.2.1.4
Np
Rp = — . 2.2.1.5
R™ Ns+ Ng ( )

Note that the sign convention for the bond graph has already been determined by the

defining equations; therefore, the direction of the arrows is not arbitrary and must

agree with equations 2.2.1.1-3.

10



Chapter 2: Transmission Modelling

2.2.2 Compound Planetary Gear Set

The compound planetary gear set for the Hydramatic 440 transmission is shown

below in Figure 2.2.2.1.

Il
]

-
I
L

— 7] T

Input Reaction
Planetary Planetary

Figure 2.2.2.1

Note that the compound planetary is formed by connecting the input carrier to the
reaction ring gear, and the input ring gear to the reaction carrier. Its bond graph is
therefore formed by connecting the input and reaction planetary gear set bond graphs
in this way, i.e., connecting the input carrier speed, w., to the reaction ring gear speed,
wrr, and the input ring gear speed, wg;, to the reaction carrier speed, wcr. This is done
below in Figure 2.2.2.2. Note that the subscript ‘/’following each speed and transformer

modulus corresponds to the input planetary and the subscript ‘R’ corresponds to the

reaction planetary.

WSR Rsa b Rnn WRR
WeoR 1
wey 1

1 ——TF 0 ~—TF < 1

wss Rs:i Ras WRI

Figure 2.2.2.2

This bond graph can then be reduced to yield

11
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WRR = WCI wshr
Rpr Rsr
1 — TF — 0 << TF < 1
wsy Ry .y WeR = WRI

Figure 2.2.2.3

Figure 2.2.2.3 thus depicts the bond graph for the compound planetary gear set
in the Hydramatic 440 transmission. Note that this bond graph contains a ring struc-
ture within it which will create algebraic loops when the system equations are solved.
The bond graph can, however, be further simplified using multiport analysis so that

algebraic loops do not exist.

The multiport junction for the compound planetary gear set is shown below in

Figure 2.2.2.4. Note the junction is termed PL to denote a planetary gear set.

YRR W3R

PL
Tss Tcr
Figure 2.2.2.4
The modulus for the multiport, N, is found from the system equations for the
compound planetary gear set and is dependent on the causality, or input/output struc-
ture, defined for the multiport junction. Note that causality for the multiport will be

determined when the entire bond graph for the transmission has been made.

The system equations for the input and reaction planetary gear sets are

wer = Rsjwsy + Rriwns (2.2.2.1)
wcr = Rspwsr + RRRwAR (2.2.2.2)

12



Chapter 2: Transmission Modelling

and the kinematic constraint equations for the compound planetary arrangemnent are

wer = WRR (2.2.2.3)

WRI = WCR. (2.2.2.4)

Substituting equations 2.2.2.3-4 into equations 2.2.2.1-2 yields the following two

equations in four unknowns:

wrr = Rsjwsr + Rpiwer (2.2.2.5)

wcr = Rspwsr + Rrrwrr. (2.2.2.6)

Equations 2.2.2.5-6 therefore show that the multiport consists of two independent
speeds and two dependent speeds. Once the causality for the multiport junction has
been determined, equations 2.2.2.5-6 must then be solved simultaneously to determine
the multiport modulus N. This has been done in Appendix II for all causal arrangements

for the multiport junction.

For the causality defined by

(:’;:) =A (:’:; ) : (2.2.2.7)

the multiport modulus A is found in Appendix II to be

A= —

1 |—=Rs;Rpr ) - RRIRRR] 2228
Rsp | RsiRsr RriRsr (2.2.2.8)

and the corresponding bond graph is shown below in Figure 2.2.2.5.

WRR WSR
PL
Ts; Tcr
Figure 2.2.2.5

Note that the general multiport modulus, N, has been changed to correspond to the

specific multiport modulus, A, for this causal arrangement as found in Appendix II.

13



Chapter 2: Transmission Modelling

The dependent torques for this multiport junction are found using the conservation
of power; i.e., the sum of the power around the multiport must equal zero. This is true
because the multiport consists only of interconnected transformers and has no energy
storage or dissipative elements. For the sign convention Zefined by Figure 2.2.2.5, the

conservation of power yields

Ts Ts
(wsr wer) (T;) + (wsr wrr) (T;i) = 0. (2.2.2.9)

Rearrangirg and substituting equation 2.2.2.7 yields

Ts Ty ‘
(wsr  wcr) (ng) = —(wsr wcr)AT (ﬁ’;) (2.2.2.10)
which implies that the dependent torques are defined by
Tsi N\ _ _,7(Tsr 9
(2) o ar (D). @22

2.2.83 Bond Graph jor the dramatic 440 Transmissio

Referring to the transmission schematic shown in Figure 2.2.1, the bond graph of

the transmission can now be found.

The lumped inertias of the planetary gear set are first added to the multiport

junction of Figure 2.2.2.4. This is done below in Figure 2.2.3.1.

Ipr Isgr
1 |
1 \ PL/I
. / N \ .
J J

Is; Icr

Figure 2.2.3.1

14



Chapter 2: Transmission Modelling
Note that each inertia is a lumped sum of all inertias rotating at the respective speed,
i.e.
Is; ~ inertia of the input sun gear, two sprag clutches, and fourth clutch plate,
Irgr ~ inertia of the reaction ring gear, input carrier, and reverse reaction drum,
Isp ~ inertia of the reaction sun gear, and

Icr ~ inertia of the reaction carrier,input ring gear, and final drive gear.

The stationary clutch torques are next added to the bond graph. The clutch torques
are calculated from equation 2.2.3.1 for plate clutches and from equation 2.2.3.2 for

band clutches.t

Te = P plwe)  Ac - Re - Sgn(we) (2.2.3.1)

Tg= P Ap - Rp - (e"2)% _ 1) Sgn{wp) (2.2.3.2)

where

P = clutch pressure

u(w) = coefficient of frictiont

0.1545, w=0;
0.0631 + 0.0504¢~ 9033l otherwise

Ac.p = clutch plate/band piston area,
Re p = clutch plate/band effective radius,
6s = band wrap angle, and

Sgn(we,p) = sign of the clutch/band slip speed,

and the clutch slip speeds are

wea = WSt (2.2.3.3)
WB12 = WSR (2.2.3.4)
WBR = WRR. (2.2.3.5)

t A.D. Deutschman, Machine Design; Theory and Practice, Macmillan Publishing Co., 1975, pp 682-5, 697-8.
} private communication with General Motors Research Labs, Warren MI

15



Chapter 2: Transmission Modelling

wes = Wt (2.2.3.3)
WB12 = WSR (2.2.3.4)
WBR = WRR. (2.2.3.5)

Note the sign of the torques is equal to the sign of the slip across the clutch.

Figure 2.2.3.2 shows the bond graph with the stationary clutch torques T, Tui2,
and Tpr added.

Irg Tpr Isp

1\
/

1 P TLIZ
pL/
1 N \1

/\ |

Is; Tca Icr

Figure 2.2.3.2

Necte that the sign convention for the stationary clutch torques on the bond graph agrees
with equations 2.2.3.1-5 in that the stationary clutch torque applied to the respective

inertia opposes its motion.

The rotating clutch torques, turbine torque, turbine inertia, final drive gear ratio
and shaft torque are next added to the bond graph, which is shown in Figure 2.2.3.3.
Note that turbine inertia is a lumped sum of all the inertias rotating at turbine speed;
i.e., the turbine inertia, chain assembly, and the input and third clutch housings. This

yields the complete bond graph for the mechanics of the Hydramatic 440 transmission.

16
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It Tc2 Ipr Tpr Isr
S U A
— 1 - 0 - 1 , I ——>Tyi0
wr

' PL~

) — 1 T 1 L TF —=
J / \ j kS wo
(Ter + Tea) Ist Tes Icr

Figure 2.2.3.3

The rotating clutch torques are calculated using equation 2.2.3.1 and the clutch slip

speeds shown below.

Wel = wes = Wr — wsy (2.2.3.6)

We = WT — WRR. (2.2.3.7)

Note equations 2.2.3.6-7 agree with the sign convention chosen in the bond graph in
that a positive clutch slip speed decelerates the turbine inertia and accelerates the

planetary inertia, and vice versa.

The transformer modulus for the final drive gear, Rp, is defined by the equation

w, = Rpwer, (2.2.3.8)
thus, Rp is equal to the inverse of the final drive gear ratio.

224 System Equations for the HHydramatic 440 Transmission

Before the systern equations can be found from the bond graph, the causal as-

signment must be made. The inputs to the mechanical section of the transmission are

17



Chapter 2: Transmission Modelling

turbine torque from the torque converter, output shaft torque, and the clutch pressures.
The causality of each clutch torque will depend on its mode of operation. If the clutch
is slipping, then the clutch is a torque source and the torque is found from equations
2.2.3.1-7. If, however, the clutch is locked up, then the clutch is a speed source and the
clutch slip speed is zero. Note when the clutch is in locked-up mode, the bond graph

determines the reaction torque of the clutch.

In Appendix III, this causal assignment has been given to the bond graph of Fig-
ure 2.2.3.3 for each mode of transmission’s operation, where the mode of operation is
determined by the clutches defined locked up. Each mode of operation in Appendix
IIT begins with the complete bond graph showing the causal assignment. Next, the
kinematic constraints for all locked-up clutches are given, followed by the equations
describing the multiport planetary junction based on the causality. The transmis-
sion system equations are then derived including the reaction torques for all locked-up

clutches.

The computer program for simulating the transmission must have the necessary
logic to determine the mode of operation for the transmission; or, equivalently, it must

determine which clutches are locked up. The required logic for this is outlined below.

For a locked-up clutch, the magnitude of the clutch torque as defined by equations
2.2.3.1-2 must be greater than the clutch reaction torque as defined by the system
equations in Appendix III. If this is not true, then the clutch will begin slipping. The
causality of the clutch will therefore change from a speed source to a torque source
whose torque is found from equations 2.2.3.1-7. Note that for these equations, the sign
of the clutch torque is set equal to the sign of the slip across the clutch. However,
when the clutch breaks from lock-up mode, the slip speed is zero and thus its sign is
undetermined. Therefore, when a locked-up clutch breaks loose, the sign of the clutch
torque as defined by equations 3.2.3.1-2 must be initially set to the sign of its reaction

torque.

A slipping clutch can only go into lock-up mode when the clutch slip speed numer-
ically passes through zero. When this happens, the simulation program calculates the

system equations corresponding to the clutch in its locked-up mode and the above test

18



Chapter 2: Transmission Modelling

for a locked-up clutch is made to check that the clutch would stay locked up. Note
that when a slipping clutch does lock up, its causality changes from a torque source to

a speed source whose slip speed is zero.

The sprags found on the input clutch, C;, and third clutch, Cs, can only transmit
torque in one direction. The input clutch sprag transmits a positive torque. If the
torque through this clutch goes negative, then its clutch capacity as defined by equa-
tions 3.2.3.1-2 is set to zero. Note that the sign of the torque for a slipping clutch
is determined by its slip speed; whereas the sign for a locked-up clutch is determined
by its reaction torque. Third clutch is equivalent except that its sprag transmits a

negative torque.

2.2.5 Torque Converter Fquations

The torque converter is described by a two-port junction, TC, as shown by Figure
2.2.4.1, with pump and turbine torque modelled as a function of pump and turbine

speed.t

Te /ilf = TC_7"UT

L

I=1Ig+Ip
Figure 2.2.4.1

Note that the engine and pump inertia are lumped together.

The describing equations for the pump torque, Tp, and turbine torque, 7r, depend
upon the mode of operation for the torque converter. For the converter mode, the
pump and turbine torques aret

Tp = 3.4325 x 10" %w? + 2.2210 x 10 3wpwr ~ 4.6041 x 107 w3 (2.2.4.1)

Tr = 5.7656 x 10 2w% + 3.107 x 10 *wpwr — 5.4323 x 10 °w}. (2.2.4.2)

When in converter mode, the torque converter acts as a torque multiplier, i.e.,

turbine torque is greater than pump torque. However, when the turbine torque in

t A.J. Kotwicki, Dyncmic Models for Torque Converter Equipped Vehicles, SAE #820393.
1 private communication with General Moto:. Research Labs, Warren MI.

19



Chapter 2: Transmission Modelling

converter mode is calculated to be less than the pump torque, then the torque converter

has changed to a fluid coupling mode and the pump and turbine torques are defined
byt
Tp = Tr = —6.7644 x 10w} + 3.20084 x 10 2wpwr — 2.52441 x 10 %wi.  (2.2.4.3)

The differential equation for the engine/pump speed, wp, is then

X = - - ’i-‘ . t‘{
op = - (Ts = Tr) (2.2.4.4)

where Tg is the engine torque.

t private communication with General Motors Research Labs, Warren MI.

20



Chapter 2: Transmission Modelling
2.3 Driveline Model

The driveline is modelled as a linear shaft of spring rate k connected to a vehicle
inertia with a load torque, T;, due to wind and rolling resistance. The input to the
driveline is the transmission output speed, w,. The schematic representation for the

driveline is shown in Figure 2.3.1 and the corresponding bond graph is shown in Figure

0 @_}

W,

Figure 2.3.1

wo > 0 — 1 |- T
k Iy
Figure 2.3.2

For a vehicle of mass m and tire radius r, the equivalent vehicle inertia is

IV = mr2. (2.3.1)

The load torque due to wind and rolling resistance is modelled ast

T, = (158.2+ 4.479 x 1072V2 ) )r, (2.3.2)

where Vj,, is the vehicle velocity in kilometers per hour. The systern equations for the

driveline are then

Ts = k{w, — wy) (2.3.3)

1
oy = 7(Ts - Tu), (2.3.4)
\'4

where w, is defined by equaticn 2.2.3.8.

t private communication with General Motors Research Lahs, Warren MI.
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Chapter 2: Transmission Modelling

2.4 Conclusions on the System Model

The transmission/driveline is modelled as a 4-6 state system depending on the
number of clutches locked up in the transmission. Table 2.4.1 lists the states for each

mode of operation.

Mode Number of States

locked clutches

1°¢ — 4*» gear 2 wp wr Ts wy

shifting 1 wp wr wer Ts wy

shift.ing 0 wp wr wer wst Ts wy
Table 2.4.1

Note that whenever a locked clutch breaks free, a new state is added to the system.

As described in Section 2.2.3 and Appendix III, ten separate sets of system equations
corresponding to each mode of operation for the transinission along with the necessary
logic to determine the mode of operation were derived to simulate the tramsmission.
A simpler method for simulation would be to always describe each clutch as a torque
source. The transmission could then be simulated using the equations found in Ap-
pendix III.1, All Clutches Slipping, since these model all clutches as torque sources.
The simulation would then be done with only one set of system equations. Note that a
locked-up clutch can be modelled as a torque source by describing it as either a spring

or a viscous damper.

Although this method would be simpler for simulation, it also would complicate
the control problem by adding more states. Since the ultimate objective of this paper
is closed lonp control, the system equations for each mode of operation were derived to

simplify the control problem.

The system equations describing the transmission were derived using a bond graph

approach; however, several other methods could have been used. These include free

22



Chapter 2: Transmission Modeiling

body analysis, the lever analogyt, and Lagrangian analysis.

Bond graph modelling has the advantages that it

shows physical connections and power flow through the drivetrain,
e is in a modular form,;

o allows use of a more complex planetary gear set, i.e., compliance, back-

lash, etc.; and

e computer programs exist which will simulate bond graphs and can be

used for analysis.

Free body analysis becomes complicated in analyzing the compound planetary gear
set for a transmission. Note, however, that the analysis presented in Appendix Il can
be followed b: one not familiar with bond graphs by considering the free body analysis
for each equation. The advantage bond graphs have over free body analysis is that
the bond graph is literally a road map for finding the system equations. Also, the
planetary gear set is modelled as a multiport junction using bond graphs. This allows
the dependent inertias to be easily reflected through the planetary and lumped into

the independent inertias.

The lever analogy transforms the rotations. elements of the planetary gear set into
a lever. Torques and angular speeds of the planetary are then represented by forces
and linear velocities on the lever. Rotational inertias of the planetary can also be
transformed into linear inertias and added to the lever. Thus, the lever analogy can
be used to solve for the system equations of the transmission by solving the system
equations for a lever. For range shifts characterized by a stationary clutch staying
locked up throughout the shift, the corresponding lever is one pinned to ground at the
reaction point. The system equations for this lever are then simply found by summing
the moments about the reaction point. However, for all other shifts, the lever will be
in both rotation and translation. This corresponds to two degrees of freedom for the

lever and is more difficult to solve.

t The Lever Analogy: A New Tool in Transmission Analysis, H. L. Benford and M. B. Leising, SAE paper

810102.
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3

Open—Loop Simulation

The overall engine/transmission/driveline system is simulated using the model
derived in Section 2 and transmission parameters listed in Appendix I. The engine
model for the simulation corresponds to a 3.8 liter carbureted engine with a peak

torque of 262 Nt-m at 2000 rpm.

At the start of each time step, a check is performed to determine the mode of
operation for the transmission as described in Section 2.2.4. The corresponding sys-
tem equations from Appendix III are then evaluated using a fourth-order Runga-Kutta
integration method. The engine model is warmed up for the first three seconds of sim-
ulation time at a 12° throttle angle with engine speed starting at 800 rpm. After three
seconds, the throttle angle is set to 70° and the shift points in terms of vehicle velocity
are taken as 32.3, 52.8, and 70.5 mph, for the 1-2, 2-3, and 3-4 shifts, respectively. The
pressure profile for the on-coming clutch at each shift point is shown below in Figure

3.1.
Cn—Coming Ciutch Pressure

Cpen—.nop Contro:

.8 — /

(kPa)
AN

(Thousands)
o
u
1
N\

Clutch Pressure
[+] o
17 »

1 1

o ¥ T T T
o 0.2 0.4

Shift TTme (Seconas)

Figure 3.1
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Chapter 8: Open-Loop Simulation

When the reaction torque of the off-going clutch goes to zero, then its clutch
pressure is set to zero. Note that the off-going clutch pressure profile only effects the

2-3 shift because the input and third clutch sprags will overrun during the 1-2 and 3-4
shifts.

The results of the simulation for a vehicle running from first to fourth gear are
shown in Figures 3.2-6. Each shift point is characterized by a drop in both engine
and turbine speeds as shown in Figure 3.2; an increase in engine, pump, and turbine
torques as shown in Figures 3.3-4; and a sharp peak in both the output shaft torque
and vehicle acceleration as shown in Figures 3.5-6. Note that a high slip across the
torque converter results in a large torque multiplication ratio between the turbine and

pump torques.

During each shift, the clutch energy of the on-coming clutch is calculated by

ty
E = /Tcwcdt, (3.1)

to

where t, denotes the start of the shift and ¢y denotes the end, Tc¢ is the clutch torque
and wc is the clutch slip speed. The clutch energy corresponding to each shift for the
simulation are given below in Table 3.1. Note that the clutch energy arises from the
heat generated between the sliding friction surfaces; therefore, high clutch energies will

generally result in a low clutch life.

Shift On-Coming | Clutch
Clutch Energy
(kJ)
1—2 C, 15.9
2—-3 Cs 7.61
3 —4 C4 5.04
Table 3.1
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Vehicle Acceleration
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Chapter §: Open Loop Simulation

3.1 Analysis of the Open—Loop Simulation

The characteristics of a powered-on upshift are further analized by studing the

first to second gear shift from the previous simulation.

An upshift consists of two basic parts, the torque phase and the inertia phase.
The shift begins with the torque phase, which is characterized by a drop in the output
shaft torque, and ends with the inertia phase, which is characterized by turbine speed

changing to its new synchronous value.

During the torque phase of the 1-2 shift, it is seen from Figure 3.1.3 that the effect
of increasing the clutch torque of the on-coming clutch, C,, is to reduce the reaction
torque of the off-going clutch, C;. When the reaction torque of the input clutch goes
to zero, the input sprag begins to overrun and the inertia phase of the shift begins.
The increasing clutch torque of the on-coming clutch then causes the turbine inertia to
decelerate to its new synchronous speed as noted in Figure 3.1.1. Note that although
the on-coming clutch torque is increasing during the torque phase, the turbine speed
continues o increase; whereas during the inertia phase, turbine speed drops. This is
because an increase in the on-coming clutch torque during the torque phase results in
a decrease in the reaction clutch torque and thus the net torque acting on the turbine
inertia remains unchanged. However, during the inertia phase, an increase in the on-
coming clutch torque results in a decrease in the net torque acting on the turbine inertia
and the turbine speed decelerates. The decrease in turbine speed results in a higher
slip across the converter which yields a higher pump torque as noted in Figure 3.1.2.

This then causes the engine inertia to also decelerate.
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Note that during the torque phase of the 1-2 shift, the transmission is still in first
gear and the on-coming clutch acts as a brake. This is the reason for the decrease in
the output shaft torque as seen in Figure 3.1.4. After the torque phase, the output
shaft torque begins to oscillate. For the inertia phase, the resonant frequency of the

output shaft is seen to be
9 cycles

[ = (7.575 — 7.225) sec
= 161.6 rad/s

= 25.71 Hz

and in second gear, the resonant frequency is
4 cycles

I'= (7975 — 7.625) sec
= 71.81 rad/s

=11.43 Hz

These resonant frequencies can be found analytically by calculating the natural fre-
quency of the output shaft connected between the transmission inertia and ground.
Note the shaft can be considered as connected to ground because the vehicle inertia
is so large that its speed changes are negligible during the shift. For this type of

mass-spring system, the resonant frequency, wg, is found to be

_ k
WR = IEQG2 ’

where k is the shaft spring rate, Igq is the equivalent transmission inertia found from
the system equations in Appendex III, and G is the corresponding gear ratio between
the inertia and the shaft. For the inertia phase, the equivalent inertia is found from

equations II1.5.11 to be

Ipg = Icr + Isi(c22)?
= 0.0367 kg-m?

and the corresponding gear ratio is that of the final drive gear equal to 2.84. For a

spring rate fo k = 7625 Nt-m/rad, the resonant frequency during the inertia phase is

_ 7625
R~V (0.0367){2.84)2

= 160.5 rad/s

calculated to be
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which agrees with the simulation results found earlier.
Dui'ng second gear. the equivalent inertia is found from equation 1I1.7.11 to be
Igg = 0.0712 kg-m?

and the cor.esponding gear ratio is that of second gear equal to 4.46. Thus, the

resonant frequ.ncy during second gear is calculated to be

. 7625
R 7\ (0.0712)(4.46)2

= 73.37 rad/s

which again agrees with the simulation results found earlier.

The torsionals in the output shaft torque during second gear damp out much faster
than in the inertia phase of the 1-2 shift. This is because the shaft is connected directly
to the torque converter in second gear; whereas during the inertia phase, the slipping
clutch d=couples the output shaft from the torque converter. Thus, it is seen that the

torque converter provides good damping characteristics to the drivetrain.

At the end of the shift, the output shaft torque has a large transient as shown in
Figure 3.1.4 which results in a similar transient in the vehicle acceleration as snown
in Figure 3.1.5. To a passenger of the automobile, this rapid change in the vehicle
acceleration is felt as a jerk. The cause of this rapid torque change can be determined
through Figures 3.1.6-8. Figure 3.1.6 is a plot of wr and wrr = 1.8Twcr. The
difference between these two curves yields the slip across the second clutch, C,, as
defined Ly equation 2.2.3.7. Thus, when the two curves meet, the shift is over and the
transmission is in second gear. The time derivative of the shaft torque, Ts, is plotted
in Figure 3.1.7 and shaft torque is plotted in Figure 3.1.8. From Section 2, the system

equation for shaft torque is given by
Ts = 71625(Rpwcr — wv), (3.1.1)

As seen by Figure 3.1.6, wcr increases as the shift is ending. This increase in wcp is

due to an increase in T¢2, which is a result of the coefficient of friction increasing as
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the clutch slip speed goes to zero. From equation 3.1.1, the increase in wcg at the end
of the shift also yields the increase in Ts as seen in Figure 3.1.7. It is this high positive
value of Ts at the end of the shift which therefore results in the large peak in shaft
torque. Note also that the value of the shaft torque when the shift is completed is less
than 1500 Nt-m and that the peak value in shaft torque of 2700 Nt-m occurs when the

transmission is in second gear.

If the clutch capacity of the on-coming clutch were limited such that wcpg did not
increase as shown in Figure 3.1.6, then the output shaft torque transient of Figure
3.1.4 would not be as large. However, limiting the clutch capacity as described above
will also increase the shift time and thus the energy absorbed by the on-coming clutch
during the shift. Conversely, a fast shift results in low clutch energies; however, this
also requires the vehicle to absorb the change in energy needed to decelerate the turbine
inertia to its new synchronous speed. This is what is seen in Figures 3.1.6-8; i.e., the
high clutch torque quickly increases the speed of the small inertia on wcgr and the
shift is completed. However, the sudden increase in wcg also causes an increase in the
shaft torque and the vehicle must absorb the change in energy required to decelerate
the turbine inertia to its new synchronous value. This change in turbine speed can be
specifically noted in Figure 3.1.1 where turbine speed is approximately 2800 rpin when

the shift is completed and then immediately drops to 2200 rpm.
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Vehicle Acceleration
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4
Closed—Loop Control

Typical shift transients for current automatic transmissions have been character-
ized in Section 3. Because the control for these shifts are performed open-loop, the
output shaft torque has undesirable oscillations (reference Figure 3.1.4, Output Shaft
Torque) which are transmitted directly to the passengers of the automobile (reference

Figure 3.1.5, Vehicle Acceleration).
In this section, a closed-loop controller is designed with the specific objectives of:

1) producing a smooth shift; i.e., the output shaft torque does not oscillate;

and
2) the shift time is to be of the same duration as the open-loop case.

Furthermore, the closed-loop controller is designed with the intent of obtaining a “per-
fect shift”; meaning that the output shaft torque is to follow exactly some desired
torque trajectory and that the shift time is to be of some set duration. Although the
control inputs to achieve a perfect shift may not be practically realizable, this design
philosophy is used to determine what the control inputs must be to achieve the most op-
timal shift. Afterwards, sub-optimal shifts may be evaluated to yield a set of realizable

inputs that may be applied to an actual vehicle.

41



Chapter 4: Closed-Loop Control

4.1 Control Design_

To meet the control objectives set in the previous section, the controller is designed
using Sliding Mode Control,t which is a control technique for nonlinear systems and
is applicable to tracking a changing reference signal. The principles of Sliding Mode

Control Theory are discussed further in Appendix IV.

The control design is broken up into two sections; Section 4.1.1 considers the
torque phase and section 4.1.2 considers the inertia phase. Only the control equations
for the first to second gear powered upshift will be developed. The torque converter
will be modelled as in lockup mode throughout the shift. This is done by lumping the
engine and pump inertias into the turbine inertia. The input torque for the equations
of Appendix III is then engine torque instead of the turbine torque from the torque
converter. The reasons for locking the torque converter are discussed later in Section

4.3 when they will become more apparent.

4.1.1 Torque Phase

As seen in Section 3.1, the torque phase for a current automatic transmission is
characterized by a droop in the output shaft torque. This was seen to happen due to
the braking effect of the on-coming clutch. To yield a smooth output torque during
the torque phase, it is therefore apparent that engine torque must increase as the on-
coming clutch torque increases. Thus, during the torque phase, the on-coming clutch
will be applied at its maximum rate and the controller will modulate engine torque to
produce the desired shaft torque. By applying the on-coming clutch at its maximum
rate, the torque phase will be of the same time duration as the open-loop case and will

end as fast as possible.

For the output shaft torque, Ts, to follow some desired shaft torque, T'sp, define

the sliding surface, S, as

1' J.J.E. Slotine, International Journal of Control, 1984, Vol. 40, No. 2,pp. 421-434
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Sl = él + /\161
where the error, €, is defined by

€, =Ts ~Tsp

é1=Ts —Tsp.

If a controller can be found which causes §; — 0, then this implies

él = —/\161.

Loop Control

(4.1.1.1)

(4.1.1.2)

(4.1.1.3)

(4.1.1.4)

Equation 4.1.1.4 will then define the dynamics of the error, €;; i.e., if a disturbance

causes T's # Tsp, then the response of ¢; — 0 is determined by equation 4.1.1.4. Note

that for large Ay, €; will go to zero quickly.

To ensure §; — 0, define a Lyapunov function, V,, as

Then S; will be guaranteed to go to zero if the relation

Vl = 3151 <0

is satisfied. Thus, choose S"l to be defined by

Sl = —mSa.t(Sl)

where

_JSi/#, S < ¢y
Sat($1) = {SZn(lsl), 51> bu;

(4.1.1.5)

(4.1.1.6)

(4.1.1.7)

(4.1.1.8)

¢1 is the boundary layer as presented by Slotine, and 7, is chosen as described in

Appendix IV based on modelling errors.
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Differentiating equation 4.1.1.1 and substituting into equation 4.1.1.7 yields

€1+ A é) = —n1Sat(S)) (4.1.1.9)
or
i:szi:SD*Alél-t“Sdt(Sl) (41110)

The system equation for the shaft torque was found in Section 2 to be

Ts = 7625(RDWCR — wv) (4.1.1.1])

Differentiating equation 4.1.1.11 and substituting into equation 4.1.1.10 yields

7625(Rpwcr — wy) = Tsp — A1éy — n15at(S)) (4.1.1.12)

From Appendix II1.7, wcg is found for first gear with the torque converter locked up

to be

. 1 .
WCcRrR = mw:r

1
5—95(4.8558ng — 2.2498T ¢ — 1.6624 RpTs) (4.1.1.13)

li

Substituting equation 4.1.1.13 into equation 4.1.1.12 and solving for T,  yields

1
Teng = ————=1 2.24987T, 1.6624 RpT
eng 4.8558 { c2+ D141S

2.92 [ 1

+ R_D d)v + ?6—2-5— (TsD - A]él —n,Sa.!.(Sl))] } (41114)

Thus, equation 4.1.1.14 determines the control law for engine torque such that T's
follows T'sp during the torque phase of the 1-2 shift. Note that T3 is to be applied at

its maximum rate as discussed in Section 4.1.1.
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For T's to exactly follow Tsp, then T'sp must be chosen to satisfy the system equations.
The system equation for shaft torque is defined by equation 4.1.1.11. Note that since
neither wcgr nor wy can be made to change instantaneously, the desired shaft torque
must be chosen such that T'sp and TSD are both continuous to satisfy equation 4.1.1.11.
This implies that at the start of the torque phase, the desired shaft torque must be

chosen with the boundary constraints

TsD|imso = Tslice: (4.1.1.15)

and

TSD't:to = T5|t=t; (4.1.1.16)
Differentiating equation 4.1.1.11 with respect to time yields

Ts = 7625(RDU'JCR - d)V) (4.1.1.17)

Since wcg is a function of the control input, T,,,, an instantaneous change in Tsp
would therefore require an instantaneous change in engine torque. If engine torque is
limited to be continuous, then the desired shaft torque must also be chosen such that
Tsp is continuous. At the start of the inertia phase, the desired shaft torque must

therefore be defined by
TSDIt:.—.tu = Tslt::tg (41'118)

to yield a continuous control law for Tep,.

To understand why this control law yields the desired shaft torque, substitute equation

4.1.1.14 into equation 4.1.1.13. This yields

. 1 1. 1 s .
Wer = B [wv + reoE (TSD — A€y — 7713“‘(51))] (4.1.1.19)
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Substituting equation 4.1.1.19 into equation 4.1.1.17 then yields

Ts = Tsp — A1é; — m Sat(S)) (4.1.1.20)

Thus, given the initial conditions defined by equations 4.1.1.15 &16, T's will follow T'sp.
Note that in the presence of initial condition errors, modelling errors, and unknown

disturbances, A\;é; and 7, Sat(S,) are stability terms which cause T's — Tsp.

4.1.2 Inertia Phase

For the inertia phase, the control objectives are to produce a smooth output shaft
torque as before and to decrease the turbine speed to its new synchronous speed. For
current automatic transmissions, the clutch torque of the on-coming clutch is set high
to decelerate the turbine inertia. It was seen in Section 3.1 that this high clutch torque
also gives rise to the large transients in the output shaft torque. However, the turbine
inertia can also be decelerated by controlling the engine torque which then allows the

output shaft torque to be controlled by modulating the on-coming clutch pressure.

For the inertia phase of the 1-2 shift, the system equations with the torque converter

locked are found from Appendix IIL.5 to be

wr = 4.9593(Teny — Tca) (4.1.2.1)

wer = 42.71438T¢, — 27.2663RpTs (4.1.2.2)

Using the results of Section 4.1.1, the control law for tracking the desired output shaft
torque is found by substituting equation 4.1.2.2 into equation 4.1.1.12 and solving for

the second clutch torque, T¢s2. This is done below in equation 4.1.2.3.

1
=—— {27.2663RpT
Tes 42.7438{ bss

1 [, 1 . _
+ R—l; [wv + 76—2—5_ (TSD — A€y — nISat(Sl)):l } (4.1.2.3)
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Note that substitution of equation 4.1.2.3 into equation 4.1.2.2 again yields equation
4.1.1.19; thus, T's will follow Tsp given the constraint equations 4.1.1.15 &16 and T,
will be continuous at ¢ = ¢y given the constraint equation 4.1.1.18, where to now defines

the start of the inertia phase.

The control law for engine torque will now be developed to decelerate the turbine inertia

from its first gear synchronous speed of

wr = 2.92wcr (4.].2.4)

to its second gear synchronous speed of

wr = 1.57Twcg. (4.1.2.5)

Note that when the turbine speed reaches its new synchronous value, the shift is com-

pleted.
Define the change in turbine speed, 6w, as

bwi = wp — 1.5Twep. (4.1.2.6)

Thus, dw; determines the required change in turbine speed for the shift to be completed.

For 6w, to follow some desired trajectory, éw;,, define the sliding surface, Sz, as

So = €3 + Ao / €2 (4.1.2.7)

where the error, €2, is defined by

€y = 5wt - 5(4)¢D (4128)

If a controller can be found which causes S, — 0, then this implies
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€a = —Aq€2 (4.1.2.9)
and thus the error dynamics will be determined by A,.

To ensure S3 — 0, which then implies S; — 0, choose S, as before in equation 4.1.1.7.

Differentiating equation 4.1.2.7 and substituting into equation 4.1.1.7 yields

éz + A2€2 = —nzSat(Sg), (4.1.2.10)

where, from equations 4.1.2.1, 6, &8,

éz = 6wt - 5(:);0
= @p — 1.5T0ck — b,

= 4.9593(Teny — Tc2) — 1.5Twer — by, . (4.1.2.11)

Substituting equation 4.1.2.11 into 4.1.2.10 and solving for T.,, yields

(1.57(1)0}2 + 5(.:&0 — A€y — nzSat(Sg)) . (4.1.2.12)

1
Tcng - TC2 + 4.9593

Thus, equation 4.1.2.12 determines the control law for engine torque such that dw,

follows éw;, during the inertia phase of the 1-2 shift.

For éw; to exactly track éw;,, then éw;, must be chosen to satisfy the system equations.
Since fw; cannot be made to change instantaneously, then fw;, must be chosen to be
continuous. Thus, for ¢; defining the start of the inertia phase and ¢; defining the end,

this implies

wip|ymy, = 5“t|t=¢; (4.1.2.13)
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and by definition of 6wy,

5"‘”0 It:t, = 5"""';::}

=0

(4.1.2.14)

Note also from equation 4.1.2.12 that an instantaneous change in 6w,, will cause engine

torque to change instantaneously. Thus, if engine torque is limited to be continuous,

then éw;, must be chosen to be continuous. To determine the boundary constraints

on 6wy, , differentiate equation 4.1.2.6. This yields

6(.:); = C;)T - 1.570'003.

(4.1.2.15)

Noting that wy and we g are related by equation 4.1.2.4 at the start of the inertia phase

and by equation 4.1.2.5 at the end, this then implies

. . L
5wt|t=tl—= wT—1.57 '2—55(.«)1‘

= 0.46207|,_,-
1

. . 1 .
5wt|t=t; = (U)T - 1.57 (i*—s?wq‘))
=0

and

Thus, éw;, must be chosen such that

Bty |y, = 046207 ,_,-

and
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6w, |t=c! =0 (4.1.2.19)

to yield a continuous control law. Note that if dw;, does not satisfy equation 4.1.2.19,
then engine torque must change instantaneously at the start of second gear to yield a

smooth output shaft torque.
To understand why the sliding mode controller causes éw, to track éw;,, substitute

the control law, equation 4.1.2.12, into equatiorn. 4.1.2.1. This yields

O:)T = 157ch + 5&.}‘1) - A2£2 - ﬂngt(Sg) (41220)

or, using equation 4.1.2.6,

6(;)t = 6(;);0 - Agfg - ﬂzSdt(Sz) (41221)

Thus, given the initial condition defined by equation 4.1.2.13, éw; will follow éw,, and
the terms Az¢2 and 72 Sat(S,) provide robustness to initial condition errors, unmodelled

dynamics, and unknown disturbances.
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4.2 Closed—Loop Simulation

The first to second gear shift is simulated using the control design of Section 4.1. The
initial conditions for the 1-2 shift are listed in Table 4.2.1 and correspond to those
from the open-loop case presented in Section 3 for a 70° throttle angle. Note, however,
that in the open-loop case, the torque converter is slipping; whereas in the closed-loop
case, it has been defined to be locked up. Thus, the initial engine/turbine speed in the

closed-loop simulation corresponds to the turbine speed from the open-loop simulation.

to 6.900 sec
wr-(to) 369.71 rad/sec
wer(to) 126.61 rad/sec
Ts to) 1569.8 Nt-m
Ts(to) -121.4 Nt-m/s
Ts (to) 278.5 Nt-m /s
wy (to) 44.596 rad/sec
Table 4.2.1

During the torque phase of the 1-2 shift, the control objective is to apply the second
clutch at some maximum rate and then modulate engine torque such that shaft torque
follows some desired trajectory. For the torque phase of this simulation, the second
clutch torque is applied at a rate of 1000 Nt-m/s and the desired shaft torque is chosen
such that its second derivative is constant. Then to satisfy the constraints of equations

4.1.1.15, 16, &18, the desired shaft torque is defined as

Tsp(t) = Ts(to) = 2785 (4.2.1)
Tsp(to) = Ts(to) = —121.4 (4.2.2)

and
TSD(tO) = Ts(to) = 1569.8 (4.2.3)
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where tg defines the start of the torque phase.

When the reaction torque of the input clutch goes to zero, the input clutch sprag starts
to overrun and the inertia phase of the shift begins. During the inertia phase, the
desired change in turbine torque is constrained by equations 4.1.2.13-14 and 4.1.2.18-

19. A convenient function to satisfy these constriants is defined as

Buweg () = { —L——Hw‘zt' [1+ cosb(t)], 6(t) < m; (4.2.4)
° 0, otherwise,
(t —ty)
o(t) =
(6) ==+

where, t, defines the start of the inertia phase, the amplitude éw,(t,) is chosen to
satisfy equation 4.1.2.13, the phase ¢ is chosen to satisfy equation 4.1.2.18, and the
frequency 7/A is chosen to determine the shift time, i.e., when éw;,, goes to zero. Note

that after éw;, goes to zero, e.g., when
0(t) => m,
then 6w, is set to zero which thus satisfies equations 4.1.2.14 &17.
The desired shaft torque for the inertia phase is chosen such that Tsp will go to zero

in order to yield a constant output shaft torque at the end of the shift. This is done

by choosing

Tepl(t {T t1) ‘-——l+1) (t—t,)<T (4.2.5)
0 otherwise,
T = 2Ts (t1)
Ts(t1)
Tsp(tl) = Ts(tl) (4.2.6)
Tsp(ti) = Ts(t1) (4.2.7)

Note that the choice of T defined by equation 4.2.5 will cause Ts p and Tsp to go to

zero in T seconds; thus, the desired shaft torque will be constant after T seconds.
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After simulating the torque phase, the initial conditions for the inertia phase are given

below in Table 4.2.2.

t 7.248 sec
wr(t1) 394.72 rad/sec
wcr(t) 135.18 rad/sec
Ts(t1) 1544.4 Nt-m
Ts(t) -24.5 Nt-m/s
Ts(t) 278.5 Nt-m /s>
wy () 47.600 rad /sec
Table 4.2.2

For a shift time of (¢t — t;) = 0.3 seconds, set

p = —0.0341 rad

A = 0.2968 sec

to satisfy equation 4.1.2.18.

The inertia phase is simulated using the above parameters. The shift is completed at
t = 7.548 seconds, where engine torque is then held constant through second gear. The

results of the 1-2 shift are given in Figures 4.2.1-6.
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4.3 Analysis of the Closed-Loop Simulation

The turbine speed, wr, and shaft torque, T's, are plotted in Figures 4.2.1-2 for the
closed-loop controller and their respective error functions, ¢; and ¢z, are plotted in
Figures 4.2.3-4, where ¢, is defined by equation 4.1.1.2 and ¢, is defined by equation
4.1.2.8. The errors shown by €¢; and ¢, during the simulation are attributed to the
finite machine precision of the computer. The control inputs 7%, and T¢c, are then

plotted in Figures 4.2.5-6, respectively.

As expected, engine torque increases during the torque phase to negate the braking
effect of T2 and then decreases during the inertia phase to cause the turbine inertia to
decelerate to its new synchronous speed. At the en1 of the inertia phase, engine torque
increases due to the constraint imposed by equation 4.1.2.19. Note again that if this
constraint is not satisfied, then engine torque will be required to instantaneously change
ai the end cf the shift to yield a smooth cutput shaft torque at <he start of second gear.
It is also seen that engine torque at the end of the torque phase is approximately equal
to the engine torque in second gear. Note that at the end of the torque phase, the
reaction torque of the input clutch is zero. By neglecting inertial torques, then second
clutch torque at the end of the torque phase is equal to engine torque. Similary, the
reaction torque of the second clutch is equal to engine torque in second gear. Noting
that the output shaft torque in both cases is equal to the second clutch torque times
the second gear ratio, then engine torque must be the same just before and after the

iriertia phase if the output shaft torque is to be constant throughout the shift.

During the inertia phase, the changes in the second clutch torque, T¢2, required to
yield a smooth output torque are very small. This is because the desired output shaft
torque is nearly constant. Note, however, that although the recond clutch torque is
nearly constant, the clutch pressure will be required to decrease at the end of the shift

due to the increase in the coefficicnt of friction as the clutch slip speed goes to zero.

It was stated at the beginning of Section 4 that the controller was to be designed
with the torque converter locked up. There are two reasons for this. The first is that

if the torque converter is slipping, then turbine torque would be required to follow a
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profile similar to that shown in Figure 4.2.5 for engine torque. From Section 2.2.5, it
is seen that the torque converter is modelled as a nonlinear damper and thus turbine
torque is a function of engine speed. Torque changes in the turbine torque similar to
that found in Figure 4.2.5 would therefore require rapid changes in engine speed, which
implies larger transients in engine torque than w.en the converter is locked up. The
second reason for locking up the torque converter is that it is modelled using steady-
state equations. Specifically, the equations for pump and turbine torque described in
Section 2.2.5 consider the fluid flow in the torque converter to be at steady-state. For
the fast transients that occur during a shift, this assumption may lead to large errors
in predicting the pump and turbine torques. Note that Sliding Mode Theory can be
applied to a transmission with the torque converter slipping and the modelling errors
associated with the torque converter could be added to n to yield a robust control
design. However, the cosi of using a torque converter model with large errors will be

even higher control efforts in engine torque.

It must be noted that values for 5, ¢, and A were not given for the simulation even
though they are parameters in the control laws. This is because initial condition errors,
modelling errors, and unknown disturbances were not added to the system. For this
case, the values of 7, ¢, and A will not have an effect on the simulation. Specifically,
for the conditions stated above, both ¢ and S will be identically equal to zero and thus

the terms Ae and Sat(S) will be equal to zero.
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4.4 Conclusions on Closed—Loop Control

As shown by both Figures 4.2.2 &4, the output shaft torque follows the desired shaft
torque. However, the desired shaft torque should be chosen with considerations given
to the requirements it will have on engine torque. For example, note that the desired
shaft torque chosen implies that the shift point corresponds to where the tractive effort
curves for first gear and second gear cross, i.e., when the output shaft torque in first
gear equals the output shaft torque in second gear. Neglecting inertial torques, this
implies that engine torque must increase by a factor of G;/G; after the upshift due to
the lower gear ratio, where G is the gear ratio. Also, the first derivative on the desired
shaft torque was chosen to go to zero at the end of the shift to yield a constant output
torque in second gear. However, as seen in Figures 3.2-3, engine torque for a real engine
decreases as speed increases for a constant throttle angle. Thus, the derivative on the
desired shaft torque at the end of the shift should correspond to the derivative of engine

torque in the new gear range.

For practical reasons, it may not be possible for engine torque to increase during the
torque phase of the shift. If this is the case, then the output shaft torque will drop
during the inertia phase due to the braking effect of the on-coming clutch. The control
objective would then be to specify the desired shaft torque beginning at the start of

the inertia phase.

Another problem that concerns obtaining a smooth shift is that the driver will often
force an upshift; meaning that the driver will start the vehicle with a high throttle
angle to accelerate to some desired velocity and then back off on the throttle when this
velocity is reached. This new throttle angle typically causes the transmission to shift.
The control problem is then again one of selecting the desired shaft torque trajectory

for the shift which the driver is expecting.
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Summary

The objectives set out in the introduction of this report were satisfied; bond graphs
were found to be a convenient way to describe a planetary gear set in order to develop
the system equations for an automatic transmission and Sliding Mode Theory deter-
mined the control requirements on engine torque and the clutch pressures to yield a
smooth shift. The remaining discussion will then give recommendations for future work

in the area of automatic transmission modelling and control.

The simulated shift transients shown in Section 3.1 should be compared to some ac-
tual experimental data to validate the overall transmission model. For torque converter
equipped vehicles, the validity associated with using a steady-state torque converter
model should be investigated. Specifically, with the present steady-state torque con-
verter model, changes in pump and turbine speeds yield immediate changes in the pump
and turbine torque. However, for a real torque converter, changes in pump and turbine
speeds require the fluid in the torque converter to accelerate. If the inertial effects of
the fluid are not negligible, then a delay will be present in the changes associated with
the pump and turbine torques. For the open-loop simulations presented in Chapter 3,
this means that the transients in the pump and turbine torques shown in Figure 3.4

may be attenuated.

In the area of closed—loop control, work should be done to determine the limitations
of a real engine when chosing the desired output shaft torque trajectory during a shift.
For the desired torque trajectory chosen in Section 4.2, it was seen that engine torque
must increase by a factor of G,/G; after the shift for a constant output shaft torque,
where G refers to the transmission gear ratio. If this is not possible, then the engine

torque after the shift must at least be known so that a smooth ouput shaft torque
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trajectory can be specified. Note that the final ouput torque should then be set equal
to engine torque at the end of the shift times the new gear ratio. Once a torque
trajectory is given, the requirements on the pressure transducers for the clutches can
be determined. Note that for the output shaft torque trajectory chosen in Section 4.3,
the clutch torque is nearly constant throughout the inertia phase of the shift. The
clutch pressure will then be required to decrease at the end of the shift due to the

decrease in the clutch coefficient of friction as the clutch slip speed goes to zero.

Implimetation of the control laws, equations 4.1.1.14, 4.1.2.3, and 4.1.2.12, require
measurements of wr, wcgr, wy, Ts, and Ts. If transducers to measure Ts and Ty are
not practical, then these measurements can be produced synthetically by developing

an observer for them.

Parametric studies will aid in determining the requirements on the above actuators
and sensors. In addition, values of n, ¢, and X should be determined which will yield a
robust control design in the presence of the possible initial condition errors, modelling

errors, and unknown disturbances.
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Appendix [

Inertia values (kg -m?):

I = 0.087

Ip = 0.058

It = 0.05623
Is[ = 0.00102
Ipg = 0.00902
Isp = 0.00452
Icr = 0.005806

The parameters for the Hydramatic 440 automatic transmission are listed below.

Engine inertia

Pump inertia

Lumped torque converter turbine inertia
Lumped input planetary sun gear inertia
Lumped reaction planetary ring gear inertia
Lumped reaction planetary sun gear inertia
Lumped reaction planetary carrier inertia

Planetary gear set transformer moduli:

Rg; = 0.2955
Rp; = 0.7045
RSR = 0.3621
Rpr = 0.6379
Rp =0.3521

Plate clutch parameters:

Number of

surfaces
Input 8
Second 10
Third 8
Fourth 2

Band clutch parameters:

Wrap angle

(radians)
1-2 12.0
Reverse 6.0

Vehical parameters:

m = 1644 kg
r=0.3214m

Input planetary sun gear transformer modulus
Input planetary ring gear transformer modulus

Reaction planetary sun gear transformer modulus
Reaction planetary ring gear transformer modulus

Final drive gear transformer modulus

Effective radius  Clutch piston

of plates (m) area (m?)
0.052 0.0070
0.055 0.0075
0.050 0.0059
0.055 0.0078

Effective radius =~ Band piston

of drum (m) area (m?)
0.069 0.0043
0.075 0.0044

Vehical mass
Tire radius
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The compound planetary gear set for the Hydramatic 440 transmission can be
described using bond graphs by a multiport junction as shown below.

WVRR WsR
T Tan
~ PL/—
Ts: Tcr
Figure I1.1

The equations describing this multiport junction were derived in section 3.2.2 and
are repeated here for convenience.

wrr = Rsjwsi + Rpiwer (1L.1)
wcr = Rspwsr + RrrwRR. (11.2)
These equations are then solved simultaniously for all causal arrangements, or in-

put/output structures, for the above multiport and the matrices defining the multiport
modulus, N, are given below.

For

_ 1 |—RsiRrr 1-- RpiRgp }
, A= g [ RsiRsr RpiRsg (11.3)

_ 1 Rgsp —Rp;Rsp
) B— RSIRSR [”‘RS,RRR RS, (11.4)

~RsiRsp Rs,
— 1
! C= raira [ ~Rsp 1- RRIRRR] (1.5)

)
)
2
), Dz____,__[ Rsi RRIRSR] (1L.6)
)
)

1-Rrifirr | Rg;Rpp Rsp

Rgy

_ 1 |Y—RBRriRrr —RgriRspr :
E= [ RsiRrr  RsiRsn (1.7)

F = L 1— Rp/Rprr -Rst
) ~ RpiRsa RSR "RSIRSR

(11.8)
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The system equations for the mechanical section of the Hydramatic 440 automatic
transmission are derived in this appendix.

The inputs to the transmission are:

o torque converter turbine torque,Tr,
o output shaft torque,Ts, and
o the clutch torques,Tc;-Tp 2.

Note that the clutch torques are computed from equations 3.2.3.1-7.

The outputs from the transmission model are:

o turbine speed,wr,
o transmission output speed,w,.

Note that the transmission output speed is computed from the reaction carrier speed,
wcr, using equation 3.2.3.8.
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III.1  All Clutches Slipping

It T2 Inp Tsr
I _I\_ !
T \(
] {
—{ 1| > 0 A 1

- 0 _,{1\</

[

(Ter + Tes) Isy T4

Figure 111.1.1

(wsn) A (W.‘s‘l )
WRR WCR

then from the conservation of power

Ts; T (TSR )
- -A .
(Tcn) Trr

The system equations from the bond graph are

Given

wrlp = Tr = Tez — (Ter = Tes)
wsilsy = (Ter + Tea) — Tea + Ty
werlcr = -TsRp + Tur

where

Tspr = Ispwsr + T2
Trr = Irrwrr + Tpr — Tca.

Writing equations II1.1.(4-7) in matrix form,

Is; O 031_0101—1000
0 Icgr|\wgr/ |00 00 O OO0 -1
o101 -1 00
0000 O 0O

and

T e
\ T
V 1 "_‘"7 TF t—usv

np

Isp

I

1 "-—77'01:

|

Igp

[}

(11.1.1)

(111.1.2)

(111.1.3)
(111.1.4)
(111.1.5)

(I11.1.6)
(111.1.7)

(111.1.8)

(111.1.9)



where

T=[TT Tcr Te2 Tes Tes Tpz Tor TSRDIT-

Substituting equation I11.1.9 into 11I.1.8 and rearranging yields
Is; 0O Tv|Isk O ] (WSI )
+ A A =
{ [ 0 I(,'R] 0 Ipgr WCR

0101—1000_AT00000100
0 000 O OO0 —1 00 -1 00 0 10

By defining

i

_|fst O T|lsp O
EQ"[O ICR]+A 0 Inpl|®

and evaluating equation III.1.11, the system equations reduce to
. 1
wr = I—'(TT = Tcr — Tes — Tea)
T

and

“"'SI _ (I_—)—l 01 azy 1 -1 —ay} —az) 0 T
d’CR - -ES 0 0 agz2 0 0 —Qa12 —age -1 '
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II1.2 C; or C5 Locked
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L
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I

(Ter + Tes)

FAY

Figure 111.2.1

Given
wsy = wr
wsr) _ o (wst)_a wr)
WRR WCR WCR
then from the conservation of power

Ts;y T (Tsn
=-A
(Tcn) Trr

The system equations from the bond graph are

).

wrlp = Tr = Tep — (wsilsr + Tos

wecrlcr = Ter — TsRp
where
Tsr = wsrlsp + Tp12
Trr = wrrIrr + Tar — Tea2.

Rearranging and writing equations I11.2.(4-7) in matrix form,

(Ir+1s;) O wr Y\ _|1 0 -1 0 -1
0 wcr/ |0 0 0

Icr 0
I -1 0
o 0

0
(d)sn
WRR

oo ©O
OO OO
OO OO

and

0

Tsn) _ [Isn
Trr 0 Igr

where T is defined by equation II1.1.10.

+0000
0 0 -1 0
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]
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1
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|

L)R

~ Tyy)

4
IR

QO =

- O

o o

Ty,
Tcr

)

Tsr
Trr

)

(11.2.1)
(111.2.2)

(111.2.3)

(111.2.4)
(111.2.5)

(111.2.6)
(111.2.7)

(111.2.8)

(111.2.9)



Substituting equation 111.2.9 into 111.2.8 and rearranging yields

(IT+[51) 0 ] T[I.‘J‘R 0 ] (‘bT )
A A . =
{ [ 0 Ien )™ 0 Igpn WCR

10 -10 -100 0 cfo0 0o 00 1 0 0]l '
{[oo 0 0 0 00—1]"A [00—-100010]}T' (111.2.10)

By defining

_{Ur+1Iss) O v|lsk O .
Iqu—[ 0 e | T2 | 0 Ippl|® (H1.2.11)

and evaluating equation II1.2.10, the system equations reduce to

(.‘;’T )= (IEQI)—I[I 0 (az1—1) 0 -1 -ay; -ay OI}T' (I11.2.12)

wWeR 0 0 anzn 0 0 —a)g —asze -

The clutch reaction torque, RT3, is
RTgpys = Isjwsy + Teq — Ty

) T
= Isjwr + Tea + [ann a2y (T;I;:) . (111.2.13)

Writing in matrix form and substituting equation 111.2.9 for (;;2) yields
RT3 = 1s 0|<‘;’T)+[o 0 0 1 00 0T
cI/s sI GoR

0

Isp A '

+[ﬂu az] 0 Imz wbR
0
0

00 0 0 1 0 0] ,
+|an azll[o 0 -1 0 o 1 O]T. (111.2.14)
Defining
— Is 0
Igqs =[Is1 O]+ [an am][*‘(’)" ,RR]A (111.2.15)
and substituting equation I11.2.12 for ( “r ) yields
WCR
_ FT -1 1 0 (azl - 1) 0 -1 —a)y —ag) 0
RTC,/a-{(Inqz) (IEm) [0 0 aza 0 0 -—aj2 —aze -1
“l"[O 0 —~a21 0 1 ay; a2 Ol}T. (1".2.16)
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II1.3 C, Locked

It T2 Ing Tyr Isp

'(I)r V& (A ‘J\_

(Ter + Tea) Ist Tes Icp

Figure 111.3.1

Given
WRR = WT
(252) -2 (22n) -2 ()

WsR WCR WCR
then from the conservation of power

Thr \ _ _pT ( Ts, )

Tcr Tsr
The system equations from the bond graph are

wrlr = Tr — (Irprwrr + Tor — Trr) — (Tct + Tes)
werlcr = Ter ~ TsRp
where
Tsy = wsilst+ Tey — (Ter + Tea)
Tsg

wsrlsr + Tpya.

Rearranging and writing equations I11.3.(4-7) in .natrix form,

(IT+IRR) 0 wr _{r -1 0 -1 00 -1 O T
0 Ick|\wcr/) " ]0O 0 0 0 0 0 O -1 ;
_fr =10 -1 00 -1 0]gs _ nr
‘[o 0 0 0 00 O —1]T B (

and
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Tst Is; O wsi 0 -1 0 -1 1 0 0 0], '
(Tsn) '[0 Isg | \wsz ) T {0 0 o 0100 T. (111.3.9)

where T is defined by equation 111.1.10.

Substituting equation 111.3.9 into 111.3.8 and rearranging yields

(IT+IRR) 0 T | Iss 0 wr
{[ 0 Izp +B 0 Isgp B WeR

1 -10-100 ~1 0 {0 -1 0 -1 10 0 0]l .
{[o 0 0 0 00 O —1]"B [0 0 0 0 0100]}1‘-(“1-3'10)

By defining

_ (Ur+Irr) O {ls, 0 ,
IEQ,_[ 0 lon | TBT1 0 10| B (111.3.11)

and evaluating equation I11.3.10, the system equations reduce to
@ — N 1 (byy—1) O (by, —1) —by, by ~1 0 ], o
(. T )= (I_E_Q_l) [0 (byy = 1) 0 (bir =1)  =byy =bz ]T. (111.3.12)

WeR b2 bi2 =biz —bz 0O —u

The clutch reaction torque, RT2, is
Ric2 = Ipprwra+ Tpr — Trr
. T -
= IppwTt + TBR+[b“ b21] ( b;) (lll.d.ld)

Writing in matrix form and substituting equaticn II1.3.9 for (;";) yields
s

RT¢, = | Irn 01( )+[0 000001 0T

Isp <woR)
-1 0 -1 10 0 ol )
+ [ b1y bzn][o O 0 0 0 1 0 OJT' (111.3.14)
Defining
Igqa=|(I Isp 0 111.3.15
EQa = |Irr O]+ b1y b21} 0 Isg B (111.3.15)

and substituting equation 1I1.3.12 for (:TR) yields
C

_ F T —\ ! 1 (bll_ l) 0 (bll - 1) —bll —bgl "1 0
RT‘”"{(IﬂL’) (I_ESA) [o bz 0 bz —ba —bpy 0 -1

+[0 _bll 0 —b“ b11 b21 1 OI}T (1”316)
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IIl.4 C Locked
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Given

(111.4.1)

0
(::2) =4 (:2;) =A (uf.n) (111.4.2)
)

then from the conservation of power
Tsy
Tcr

The state equations from the bond graph are

— _AT (TSR ) , (111.4.3)

wrlr =Ty — Tes — (T(;] + T(;g) (1”4 4)
werlcr = —TsRp + Tcr (111.4.5)
where
Tsp = wsr/sr + Trr2 (111.4.6)
Trr = wrrlrr + Tpp — Tca. (111.4.7)

Writing equations 111.4.(4-7) in matrix form,

Ir 0 01_1—1—1—10000,1-,+'0
0 Icr wer) |0 O 0 0O 0 0 0 -1 (T(;R
f1 -1 -1 -1 000 0)x [0 0]/(Tsr
_[0 0 0 0 0 0O —l.]T_[am a"g] (TRR) (1”4'8)

and
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Tsr _ Isp 0 WSR + 0 0 0 0 0 1 0O i
Trr /]~ 0 Irr WRR 00 -1 00010
_[1sg 0 1[0 a2 ( wr 00 0 0010 0},
"]l o Irr||0 am]|\écr) |00 -1 0001 0 T (149)

where T is defined by equation 111.1.10.

Substituting equation I11.4.9 into I11.4.8 and rearranging yields

Ir 0 0 0][Isp o© ] [o am] (a)T )
. = 111.4.10
{ [ 0 ICR] + [012 022} [ 0 Igr| [0 a2 WeR ( )
1 -1 -1 -1 000 0| (O 0 00 0 0 01 00
0 0 0 0 0 0 0 -1 ayjz Qaz2 00 -1 00 0 10

By defining

Hx

Ir 0 0 0 )[Isg O [0 ayz ]
Ieq: = + 111.4.11
= [ 0 ICR] [‘112 022] [ 0 Irr|]|0 ap ( )
and evaluating equation II1.4.10, the system equations reduce to
: -1
wr ) _ 1 -1 -1 -1 0 0 0 0] ’
<«bcn> - (IEQ’) [0 0 az 0 0 —ayp —an —1]T' (111.4.12)

The clutch reaction torque, RTg,, is
RTcs = Ter + Tos + Tsy
Ts _
=Tcr + Tes — | *"‘). 11413
cr+4icas—|an ﬂzx](TRR ( )

Writing in matrix form and substituting equation 111.4.9 for (;[,‘SR ) yields
RR

Is 0 0 L
ARIRITR S AR ES

0 0 0 0 0 1 0 0],
—[au 021][0 0 -1 00 0 1 O]T (111.4.14)
Defining
¥y ISR 0 0 a2
IEQ: = [a'll (121] [ 0 IRR] [0 azz (111415)
and substituting equation II1.4.12 for ( “r ) yields
WCR
T -1f1 -1 -1 -1 0 O 0 0
RTC‘ _{ - (]ﬂ) (]ﬂ) [0 0 a22 0 0 —ajz2 —Aag2 -1
+ [0 1 a3 1 0 —ay; -—ag 0] }'j." ("1.4.16)
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II1.5 B,, Locked

Given

Ir Tea Inr Tpr
T 1 N/
Tr
| 1 1 0 ]
g | z 1
T )
(Ter + Tea) Is; Ty
Figure II1.5.1
WegR = 0
()= ()= (uin)
wsyt WCR WCR

then from the conservation of power

)<

The state equations from the bond graph are

where

wrlr

werleor

Trr
Ts;

).

Tr — Tez = (Ter + Tea)
~TsRp + Tcr

Trr = wrrlrr + Tor — Tc2
Ts; =wsilsi + Teca — (Ter + Tes).

Writing equations I11.5.(4-7) in matrix form,

and

[ roe) (i)
0 Icr|\wecr

1 =1
~ o o

1 =1
“lo o

-1
0
-1
0

-1
0

-1
0
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oo ©oo

©C O O .

oo OO

0
C22

I

Trr
sy

(111.5.1)
(111.5.2)

(111.5.3)

(115 4)
(111.5.5)

(111.5.6)
(111.5.7)

) (111.5.8)



Tre _[Irr O WRR +fo 0 -1 0 00 1 0]x
Tsr |~ 0 Isy wsy lO -1 0 -1'1 0 0O
_ Irg O 0 cy2 wr + 0o 0 -1 0 0O
0 Isr[{0 co2) \wer 0 -1 0 -1 10
where T is defined by equation 111.1.10.
Substituting equation [I1.5.9 into 1I1.5.8 and rearranging yields
Ir 0]+[0 0][[33 0 0012] (dlr)_
0 Icr C12 €22 0 Isr] [0 c22 WCR
1 -1 -1 -1 000 O] |O 0 0O 0 -1 0 o0
0 0 0 0 0 0 0 -1 ci12 €22 0 -1 O -1 1
By defining
I _[IT o“+[0 o“l,m 0 om]
Lo 0 Icr | c12 c22 0 Is; [0 c22
and evaluating equation II1.5.10, the system equations reduce to
W _(I )—1'1 -1 -1 -1 0 0 0 0
WCR EQl [0 c22 12 €2 —ca2 0 —cj2 -1
The clutch reaction torque, RTpg,3, is
RTpi2=Tsr

T
= -[Cu 021]<T’;f

> yields

).

Trr

Substituting equation I11.5.9 for (
Tsr

_ Irp 0 | [0 c)2 wr
RTpi2= —|cn 621][ 0 151][0 con | \ocn
0o 0 -1 0 0 0 1 0{3
~len °2‘|[0 -1 0 -1 100 o]T‘
Defining
_ Irp 0O 0 ci2
IEQ:—[cu 021][ 0 131][0 622]
and substituting equation II1.5.12 for ( “r ) yields
WCR
— -1 -1 -1 -1 0 0 0
v { - () (520
B1z { -FQaj \-Ea1 0 c22 c12 c22 —c22 0 —cy2

+[0 c21 €11 €21 —c21 0 —epy Ol}f
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-

T.

0 .
0] T (liL.5.9)

(111.5.10)

(111.5.11)

(1115.12)

(l11.5.13)

(111.5.14)

(111.5.15)

0
-1

(111.5.17)



111.6 By Locked

Ir Tca Inn Tur Isr
Tr,f 1 } 7—0[_ }12 _IL"—‘7TLH“
wr 4 -
T pLY
> 0 A 1 R
| A
(Tz1 + Tiza) Is; Ty Icr

Figure 111.6.1

Given
WRR = 0
(ose) -2 (2n) -2 (o)
WsR WCR WCR
then from the conservation of power
(TRR) = -BT (TSI )
Tcr Tsp )’
The system equations from the bond graph are

wrlpr = T — Tz — (Ter + Tea)
werler = —TsRp + Ter

where

Ts; = wsiIsy + Tca — (Ter + Tes)
Tsr = wsrlsp + To12.

Writing equations II1.6.(4-7) in matrix form,

It 0 wr ¥ -1 -1 -1 0 0 0 O T-f- 0

0 Icpl\wcg/ " ]l0 0 0 0 00 0 -1 Tor
_1—1—1—1oooo,f_oo Ts;
10 0 0 O O 0 0 -1 by boa | \Tsr

and
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(111.6.1)
(11L.6.2)

(11L.6.3)

(111.6.4)
(I11.6.5)

(111.6.6)
(111.6.7)

) (111.6.8)



Tsr _ Is; 0 wsy + 0 -1 0

Tsn - 0 Isgr WSk 0 0 0
st 0 0 b2 wr + 0 -1 0 -
Tl 0 Isp| |0 ban| \wer 0 0 O

where T is defined by equation I11.1.10.

0 0], e
0 0]’1‘ (111.6.9)

Substituting equation III.6.9 into II1.6.8 and rearranging yields

Ir 0 o o]fIsy o [o bm] (ar)
. = 111.6.10
{ [0 Icn] + [bxz bzz] [ 0 ISR] 0 b2 WeR ( )

1 -1 -1 -1 000 0] [o o]fo -1 0 -1 100 0]]|g
0O 0 0 0 000 1 b2 b22|[|0O O O O O 1 0 O '
By defining
Ir 0] 0 0 ][isy 0 ][0 b2 ,
1 = JIL.6.11
=qr [0 ICR_+[612 522][0 Isp | |0 b22 ( )
and evaluating equation II1.6.10, the system equations reduce to
wr \ _ 11 -1 -1 -1 o0 0 0 0| o
(wcn)‘(lm‘) 0 by 0 ba b —bm 0 _I]T. (111.6.12)
The clutch reaction torque, RTgp, is
RTpr = Tcz2 + Trr
Ts:) .
=Tecz2 —|b b . 111.6.13
ox=(bu bul (1 (1116.13)

Writing in matrix form and substituting equation I11.6.9 for (77,‘3’ ) yields
SR

Is 0 0 b o
RTpr={0 0 1 0 0 0 0 0]T—[b, b’“][gl Isn:] [0 b;z] <w“:~7n)

0 -1 0 -1 1 0 0 0Of
—[b11 b2y [0 0 0 0 010 0] T. (111.8.14)
Defining
— I 0 0 b
Igqa = [b11 b2 [ SI Isn.] [0 b;] (111.6.15)
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and substituting equation 111.6.12 for (:T ) yields
ChR

)—1[1 -1 -1 -1 0 0 0 O

RTBR:{_(EE‘E) (Iﬁl_‘ 0 by O by —bg -bygz 0 -1

+(0 by, 1 by, =—by by O o|}’f. (111.6.16)
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L7 12 Gear ~ C; & B,, Locked

Ir Tez Ingp

Tr
| 1 )

wr

L,

N

i

(Ter + Tea)

Figure 111.7.1

Given

wgp = wr

wgp =0

()
WCR

then from the conservation of power

(7)==

(

wsr
WSR

The system equations from the bond graph are

where

)=

Tme)
Tcr )’

Itwr = Tr = Te2 — (Isiwst + Tea — Tsy)

dll
d21 ] “r

Trr = Irprwrr + Tpr — Tc2

Tecr = Icrwcr + TsRp.

Rearranging and writing equations I11.7.(5-7) in matrix form,

(Ir+Isf)or={1 0 -1 0 -1 0 0 0]T~(dy

and

(TRR) _ [IRR 0
Tcr 0 Icr

where T is defined by equation II1.1.10.

I

WRR
WCR

78

o o

o o

dzx](

o o

O -

— TF} =
A, o

(111.7.1)

(111.7.2)

(111.7.3)

(111.7.4)

(111.7.5)

(111.7.6)

Trr
Tcr

)

- O
| WO
=

(111.7.7)

(111.7.8)

(111.7.9)



Substituting equation 111.7.9 into I11.7.8 and rearranging yields

e L] for =
Icr | | d2y

{[1 0 -1 0 -1 0 0 0]—[dy dm][g 0

I
{IT+Is,+[d“ dn][ o

-1

o O

By defining

Iprp O di) ]
I =Ir+ Is;+|dy, d
EQ1L T+ Isr+[dyy da2y) [ 0 ICR] [dzn
and evaluating equation III.7.10, the system equations rcduce to

d)T= —}——[1 0 (dll—l) 0 -1 O '—dll - 421]’1"
Igq:

The clutch reaction torques, RTc; and RTg,2, are

RTgr = Isjwsr + Tes — Ty
= Isywr + Tca — Tsy

and
RTg,2 = Tsr.

Writing equations II1.7.(13-14) in matrix form yields

RTcr \ _ [Ist]. 0 000100 0)sx, [-Ts
(RTB,Q)'LO_“’T*Loooooo R A
_[Is1]. o000 1000l [-1 0](Ts
=lo|“TloooooooofT o 1]|\Ts
_[Ist] . 000010 0 0] _[—IOTTR
‘_o_“’"+00000000_T lo 1P \Tun
Substituting equation II1.7.9 for (TRR) yields
Tcr
RTcr \ _ [Ist]. [0 0 0 0 1 0 0 0]
(RTBH)"[O “T+1o 000000 0T
_-—IODT Ing O di
0 1 0 forjlda]”T
-1 0], r[0 0 -1 00010
"[0 1D[oo 0 00001]T

[ =]
[
- O
| S |
N —
!

L. (111.7.10)

(1IL7.11)

(111.7.12)

(111.7.13)

(111.7.14)

) . (I1L7.15)

(11L.7.10)



Defining

Teqa = [ 0 ] [0 1]D [ 0 1GR] [dm (111.7.17)

and substituting equation 1I1.7.12 for wr yields

RT¢r \ _ 1 ) ) . i
(RTm>“{ (IEQ=)|1 0 (dyy—-1) 0 -1 0 —d, —dy|

Igq:
0 0 —dy; 0 1 0 dy, dy
+[0 0 d2 0 0 0 —djz —d T. (111.7.18)
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1.8 2#4 Gear ~ C, & B,, Locked

It Tc2 Inn Tpr Isr
! !
LT T AW
IRl = 0

Ts

(Ter + Tea) Is; Tea Ien

Figure I11.8.1

Given

WRR = WT
wspr=0

(“)Sl ) =E (WRR) = [cll]wT
WCR WSR €21
then from the conservation of power
(TRR) - _ET ( Ts: )

Tsr Tcr
The system equations from the bond graph are

Irwr = Tr — (Irrwrr + Tor — Tre) — (Tcr + Tes)
where

Tsy = Ispwst + Tes — (Ter + Tea)
Tcr = Icrwcr + TsRp.

Rearranging and writing equations III.8.(5-7) in matrix form,

(IT+IRR)L:J1~=|1 -1 0 -1 0 0 -1 0]T—~[c“ 621]( "

and

Ts;_]s;O (;)31+0—10—11000
Tcr) | 0 Igr WeR 0O 0 0 0 0 0 01

where T is defined by equation I11.1.10.
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(5%

(111.8.1)
(111.8.2)

(111.8.3)

(111.8.4)

(111.8.5)

(111.8.6)
(111.8.7)

(111.8.8)

(111.8.9)



Substituting equation 111.8.9 into I11.8.8 and rearranging yields

I 0 .
(vt ol (2]

0 - -1 1 0 0 O =

By defining

Ig 0
Iggy = I+ Ipp + | e 621][ 3’ Icn][:;]

and evaluating equation II1.8.10, the system equations reduce to

. 1 .
wT=———[l (Cu"l) 0 (511‘1) —€11 0 -1 '—CglIT.
Ieqr

The clutch reaction torques, RT¢2 and RTp,2, are

RTc2 = Irpwrr + Ter — Tre
= Ippwr + Ter — Trr

and

RTp,2 = Tsr.

Writing equations II1.8.(13-14) in matrix form yields

RTc: \ _ [Irr]. (0 0 0 00 0 1 0], —Trr

(RTBm)—[ 0 [“TTlo oo 0000 0Tt T
_[1rr]. (0 0000010 -1 0) [ Tgrr
"[o_“’TJ’_oooooooo_T*[o 1](7'5,3
_[Irr]. o0 00001 0]z [-1 0] r
‘[o“"T*_oooooooo_T o 1)B

Tcr

RTc2 _ Irr | . 0
(aren) = '8+

Substituting equation I11.8.9 for (T’”‘ ) yields

Defining

82

(111.8.11)

(111.8.12)

(111.8.13)

(111.8.14)

) . (111.8.15)

(I11.8.16)



— IRR '—l 0 T ISI 0 [
IEQ’_[ 0 ]"[0 1]E 0 Iup||es (111.8.17)

and substituting equation 111.8.12 for wr yields

RT. ) R —
(RT;;):{ (IE—Q’-)I1 (era=1) 0 (exn-1) =—eyy 0 -1 ey

Ieq)
0 —e1n 0 —enn ey 0 1 e .
+ [0 €12 0 €12 —€12 0 0 "‘822] }T' (“1.8.18)
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II1.9 34 Gear ~ C, & C; Locked

It T2

Figure I11.9.1

Given

wsy = wr

WRR = WT

(wsn) —F (wnft) _ [+ f12)
WCR ws1 (f21+ f22)

then from the conservation of power

(TRR) — _FT <Tsn)
Ts, Tcr )

The state equations from the bond graph are

Jor

Itwr = Tr = (Isjwsi + Tes — Tet) — (Irrwrr + Ter — TrR)

where

Tsr = Ispwsr + Tp12
Tcr = Icrwcr + TsRp.

Rearranging and writing equations II1.9.(5-7) in matrix form,

(IT+131+IRR)L;JT=[1 0 00 -1 0 -1 0]T+(TR,,)+(T51).

Or, substituting equation II1.9.4

84

(111.9.1)
(111.9.2)

(111.9.3)

(111.9.4)

(111.9.5)

(111.9.6)
(111.9.7)

(111.9.8)




(IT+ ISI+IRR)";’T=II 0 00 -1 0 -1 OIT
Ul () =1 fee) (1)
={1 000 -1 0 ~1 0]T

—[(fir + fiz) (far+ f22)) (;::;ﬁ) (111.9.9)

and

Tsr) _ [Isr 0 | (wsr 0000010 0]
(TGR)_[ 0 Iorj\wer) {0 000000 1]T (111.9.10)

where T is defined by equation II1.1.10.

Substituting equation 111.9.10 into I11.9.9 and rearranging yields

{IT +Ist’ T+ [(fir + f12) (fa1 + f22)) [If," IER] “gi I 23 }wr = (111.9.11)

00 0 0O
0 0 00O

{[1 0 00 -1 0 -1 O]=[(fir+ f12) (f21+f22)|[ (l)

o C
=]
| CESOR—
S

3

By defining

Igqi= It + Ist + Ipr + [ (fir + f12) (fa1 + f22)] [!‘ZR 1312} [Egi I gz;] (111.9.12)

and evaluating equation II1.9.11, the system equatioirs reduce to
1

wr = (1 0 0 0 -1 ~(fu+fiz2) -1 —(fart f22)]T. (111.5.13)
Iequ

The .utch reaction torques, RT¢; and RTc3, are

RT¢2 = Irpwrr + TR — Trr
= Jprwr + Ter — T..r (111.9.14)

and

RT3 = Isjwsy + Tea — Tsy
= Isqwp + Toa — Tsy. (111.9.15)

Writing equations II1.9.(14-15) in matrix form yielda
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RT02=Inhw+OOOOOOIOT—TRR

RT¢s Issr [“T71o0 0 001000 Ts1
000001 0)s or/Tsr ‘
0007100 0]T+F (TCR)‘ (1L9.10)

Substituting equation II11.9.10 for

].
SVHES [8
(&

RT(_;2=IRRQ+OO 000]0,1-,
RTcs Is; |“T700 001000
T

0
+F [ISR 0 ]T%fu‘f'fxz)
0
0

0 Icr f21+ f22) wr
[0 00001 0 0]z
+F [0 0 0 8 0 0 I]T' (111.9.17)
Defining
T Igp v |1.r 0 (fr + fl2)]
Igqa = F 111.9.18
=i [13' ] * [ 0 ICR] [(f21+f22) ( )

and substituting equation II1.9.13 for wr yields

(f}ﬁj)“{ — (Te@a) (1 0 0 0 =1 ~(futfia) 1 ~(far+ faa)]

Igqu
0 0000 fiu 1 falls
+[0 6001 fho f”]}'r. (111.9.19)
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III.10 42 Gear ~ C, & C, Locked

Ing Tpr Isp

"— —~ 0 /il\/ IHTF%

(Tor + Tea) Is; Tca Icn

Figure 111.10.1

Given
WRR = WT
wsr=0
(wsn) =F (NRR) o [fu1w7_
WCR ws1t fsz

then from the conservation of power

Trr T (Tsn )
= -F .
( Ts; \ Tcr

/

The state equations from the bond graph are

Itwr = Tr — (Ter + Tes) = (Irrwrr + Tpr — TrR)

where

Tsp = Isgpwsp + Tp12
Tcr = Icrwcr+ TsRp.

Rearranging and writing equations II1.10.(5-7) in matrix form,

(Ir+ Igp)or=(1 -1 0 -1 0 0 -1 O|T+(Trr)

=(1 -1 0 -1 00 -1 0]F-(f, le](

and
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(111.10.1)
(111.10.2)

(111.10.3)

(111.10.4)

(111.10.5)

(111.10.6)
(111.10.7)

(111.10.8)



Tsg\ _[Isk 0 J{wsg) . [0 0 0 0 0 1 0 0],
(Tcn)—[ 0 Ior|\acr) o 0000001 T (111.10.9)

where T is defined by equation II1.1.10.

Substituting equation I111.10.9 into 111.10.8 and rearranging yields

{1T+Imz+|fu fa1] [I?)R 1212] [gi] }dIT )

00000 1 0 0]l
{[1 -1 0 -1 00 -1 0]-[fy, 12,][0 00000 0 1]}T.([ll.10.10)

By defining
Is 0 f
Iggi = Ip + Igp + SR H'“] 111.10.11
equ=Ir+Ipr+{fun fa] [ 0 Ion||fa ( )
and evaluating equation II1.10.10, the system equations reduce to
bp=—t (1 -1 0 -1 0 —fy -1 —fu]T. (111.10.12)
Iequ

The clutch reaction torques, RT¢2 and RTcy4, are

RT¢; = Irpwrr + Ter — Trr
= Igpwr + Tgr — Trr (111.10.13)

and
RTcy =Ty + Tes + Tsy. (111.10.14)

Writing equations I11.10.13 & 14 in matrix form yields

(R)=["s]ers [0 20 06 6 o o7 ()
[l o e g ey o o] ()
- ing:wT+:g (1) g (1’ g g (1) g-i‘—["ol 2]FT<£ZI;>.(III.IO.15)
Substituting equation I11.10.9 for (;Z::) yields
() =[5 Jere [0 1 6 00 0 0 o7
S A |
SRR R R R R PR



Defining

_{Irr| _|-1 Ol |Isr O fu
IEQ3 = [ 0 ] [ 0 I]F 0 Icr far (111.10.17)
and substituting equation I11.10.12 for wr yields
RTc2\ _ ) 1 (o0 B B B L
<RT(;3> = {]EQl (IEQg) [ 1 1 0 1 0 fi 1 ]'_“l

0 0 0 0 0 fiy 1 fa .
+[0 1 01 0 —f2 0 —fzz] }T' (I11.10.18)
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